where

$$S_{1}(z,\chi) = \sum_{\rho$$

$$S_2(z,\chi) = \sum_{p'$$

and $\rho' > \rho$. Clearly

$$\sum_{\chi \in J_{\mathbf{d}}(q)} |s_2(z,\chi)|^2 \leq \sum_{\chi \pmod{q}} |s_2(z,\chi)|^2$$

and the sum over all χ (mod q) may be estimated as in the case K=0 above. We then obtain

(5)
$$\sum_{\chi \in L_{d}(q)} |s_{2}(z,\chi)|^{2} \ll \phi(q)(\rho')^{1-2\sigma_{1}}$$

for $z \in \partial U$, where the implied constant depends on σ_1 . We now estimate the remaining sum on the right hand side of (4). Fix $\varepsilon > 0$ so small that $0 < d - \varepsilon$ and $d + \varepsilon < \frac{1}{2}$. From the proof of Lemma 3.6 we recall the function $\xi(\tau)$ was defined so that $\xi(\tau) = 1$ if $||\tau|| \le d$, $\xi(\tau) = 0$ if $||\tau|| \ge d + \varepsilon$, and $\xi(\tau)$ drops off to 0 linearly on $d \le ||\tau|| \le d + \varepsilon$. Also

(6)
$$\xi(\tau) = \sum_{n=-\infty}^{\infty} c_n e(\tau n) ,$$

where the series converges absolutely and

$$c_0 = 2d + \epsilon$$
.

Let p_1, \dots, p_K denote the primes in \mathbb{P}_K and define

$$\xi_{K}(\chi) = \prod_{k=1}^{K} \xi(\frac{\arg \chi(p_{k})}{2\pi} - \theta_{p_{k}})$$
.

Then

(7)
$$0 \leq \xi_{K}^{2}(\chi) \leq \xi_{K}(\chi) \qquad (\chi \pmod{q})$$

and

(3)
$$1 = \xi_K^2(\chi) = \xi_K(\chi) \qquad (\chi \in \mathcal{Q}_d(q)).$$

Furthermore we have

$$(9) \quad \xi_{K}(\chi) = \sum_{-\infty < n_{1}, \dots, n_{K} < \infty} c_{n_{1}} \dots c_{n_{K}} e^{-\sum_{k=1}^{K} n_{k} \theta_{p_{k}}} \chi \left(\prod_{k=1}^{K} p_{k}^{n_{k}} \right)$$

$$= \sum_{n} c(n) \chi \left(\prod_{k=1}^{K} p_{k}^{n_{k}} \right) , \text{ say,}$$

where $\vec{n} = (n_1, \dots, n_K)$ runs through all K-tuples of integers and

(10)
$$c(\vec{0}) = c_0^{\mathbb{K}} = (2d+\epsilon)^{\mathbb{K}}.$$

Since the series in (6) is absolutely convergent, so is the series in (9). Thus, given $\epsilon_1 > 0$, there exists a number $N(\epsilon_1)$ such that for each $N \geq N(\epsilon_1)$ and all χ (mod q),

$$|\xi_K(\chi) - \sum_{\|\vec{\Lambda}\| \leq N} c(\vec{\Lambda}) \chi \left(\prod_{k=1}^K p_k^{n_k} \right) | < \epsilon_1$$
,

where $\|\vec{n}\| = \left(\frac{K}{k=1}, n_k^2\right)^{1/2}$. For such an N we obtain

$$\begin{aligned} \xi_{K}^{2}(\chi) &\leq 2 \left| \sum_{||\vec{n}|| \leq N} c(\vec{n}) \chi \left(\prod_{k=1}^{K} p_{k}^{n_{k}} \right) \right|^{2} \\ &+ 2 \left| \xi_{K}(\chi) - \sum_{||\vec{n}|| \leq N} c(\vec{n}) \chi \left(\prod_{k=1}^{K} p_{k}^{n_{k}} \right) \right|^{2} \\ &\leq 2 \left| \sum_{||\vec{n}|| \leq N} c(\vec{n}) \chi \left(\prod_{k=1}^{K} p_{k}^{n_{k}} \right) \right|^{2} + 2\epsilon_{1}^{2} .\end{aligned}$$

Using this, (7), and (8), we find

$$(11) \sum_{\chi \in \mathcal{Q}_{d}(q)} |s_{1}(z,\chi)|^{2} \leq \sum_{\chi \pmod{q}} |\xi_{K}^{2}(\chi)| |s_{1}(z,\chi)|^{2}$$

$$< 2 \sum_{\chi \pmod{q}} \left| \sum_{\|\vec{n}\| \leq N} c(\vec{n}) \chi \left(\prod_{k=1}^{K} p_{k}^{n_{k}} \right) \right|^{2} |s_{1}(z,\chi)|^{2}$$

$$+ 2\varepsilon_{1}^{2} \sum_{\chi \pmod{q}} |s_{1}(z,\chi)|^{2}.$$

Write z = x+iy. We immediately obtain from Lemma 5.2 that

(12)
$$\sum_{\chi \pmod{q}} |s_1(z,\chi)|^2 = \phi(q) \sum_{\rho$$

As in our previous estimates we see that this leads to

(13)
$$\sum_{\chi \pmod{q}} |s_{1}(z,\chi)|^{2} \ll \phi(q) \rho^{1-2\sigma_{1}}$$

for z ϵ δu , where the constant depends on σ_1 . Again by Lemma 5.2 we have

(14)
$$\sum_{\chi \pmod{q}} \left| \sum_{\substack{n \leq N \\ |n| \leq N}} c(n)\chi \left(\sum_{k=1}^{K} p_k^n \right) \right|^2 |s_1(z,\chi)|^2$$

$$= \phi(q) \sum_{\substack{n \leq N \\ |n| \leq N}} |c(n)|^2 \sum_{\substack{n \leq p \leq p}} \frac{|\Lambda_{q}\delta/4(p)\chi(p)/\log p|^2}{p^{2x}},$$

provided q is so large that none of the numbers $p = \prod_{k=1}^K p_k^{n_k} \quad \text{, } \rho over p is exactly the right-hand side of (12), so by (13) it is$

for $z \in \partial U$, where the constant depends on σ_1 . We deduce from (7) and (10) the absolute convergence of the series for

 $\boldsymbol{\xi}_{K}(\boldsymbol{X})$, and the relations

$$\lim_{\mathbf{q} \to \infty} \frac{1}{\phi(\mathbf{q})} \sum_{\chi \pmod{\mathbf{q}}} \chi(\mathbf{n}) \overline{\chi}(\mathbf{m}) = \begin{cases} 1 & \text{if } \mathbf{n} = \mathbf{m} \\ \\ 0 & \text{otherwise} \end{cases}$$

$$\lim_{q \to \infty} \frac{1}{\phi(q)} \sum_{\chi \pmod{q}} \chi(n) = \begin{cases} 1 & \text{if } n = 1 \\ \\ 0 & \text{otherwise} \end{cases},$$

that

$$\sum_{\substack{||\vec{n}|| \leq N}} |c(\vec{n})|^2 \leq \sum_{\substack{||\vec{n}||}} |c(\vec{n})|^2 = \lim_{q \to \infty} \frac{1}{\phi(q)} \sum_{\chi \pmod{q}} \xi_K^2(\chi)$$

$$\leq \lim_{q \to \infty} \frac{1}{\phi(q)} \sum_{\chi \pmod{q}} \xi_K(\chi)$$

$$= c(\vec{0}) = (2d+\epsilon)^K.$$

Thus the expressions in (14) are

$$<< (2d+\epsilon)^K \phi(q) \rho^{1-2\sigma} 1$$
.

Combining this with (11) and (13) we get

(15)
$$\sum_{\chi \in \mathcal{Q}_{\mathbf{d}}(\mathbf{q})} |s_{\mathbf{l}}(z,\chi)|^{2} \ll ((2\mathbf{d}+\varepsilon)^{K} + \varepsilon_{\mathbf{l}}^{2}) \phi(\mathbf{q}) \rho^{1-2\sigma} \mathbf{1}$$

for each z ϵ ϑU , where the constant depends on σ_1 . Finally, from (3), (4), (5), and (15) we find that

$$\sum_{\chi \in \mathcal{Q}_{\mathbf{d}}(q) \text{ max} |S(s,\chi)|^2}$$

<<
$$((2d+\epsilon)^{K} + \epsilon_{1}^{2})\phi(q)\rho^{1-2\sigma_{1}} + \phi(q)(\rho^{\prime})^{1-2\sigma_{1}}$$
,

where the constant depends on σ_1 , δ , and A , or, since δ and A depend on σ_1 , σ_2 , and C , on σ_1 , σ_2 , and C . Choose ρ' so large that

$$(\rho')^{1-2\sigma_1} \leq (2d)^{\kappa_{\rho}^{1-2\sigma_1}}$$
,

and ϵ, ϵ_1 so small that

$$(2d+\epsilon)^K + \epsilon_1^2 \leq 2(2d)^K$$
.

This gives (2) and proves the lemma. \Box

Lemma 5.5. Let C be a compact set in the strip $\frac{1}{2} < \sigma_1 < \sigma < \sigma_2 < 1$, let $\rho \ge 1$, and let $0 < d < \frac{1}{2}$. For each $p \le \rho$ let θ_p be fixed, $0 \le \theta_p < 1$. If for $q \ge 1$, $\gamma(q)$ is a subset of the set of characters (mod q) with cardinality

$$J(q) = \phi(q)(1 + o(1))$$
,

then for q sufficiently large there is a χ ϵ \neq (q) such that

(16)
$$\left\|\frac{\arg \chi(p)}{2\pi} - \theta_p\right\| \leq d, p \leq \rho, p/q$$

and

$$\max_{s \in C} \left| \sum_{\rho$$

The implicit constant depends on σ_1 , σ_2 , and C .

<u>Proof:</u> Let K(q) be the number of primes $p \leq \rho$ such that $p \not | q$, and let $Q_d(q)$ be the set of characters (mod q) which satisfy (16). We write

where

$$S(s,\chi) = \sum_{\rho$$

and we write $G_d(q)$ for the cardinality of $\chi_d(q)$. It suffices to show that for some choice of c depending on σ_1 , σ_2 , and C , and for all large q ,

is non-empty. Now for large q we have by Lemma 5.4 that

$$\sum_{\substack{\chi \in \mathcal{Q}_{d}(q) \text{ sec}}} \max |S(s,\chi)|^{2} \ll (2d)^{K(q)} \phi(q) \rho^{1-2\sigma} 1,$$

where the constant implied by <code>\def depends on \sigma_1, \sigma_2, and C</code> . It follows that the cardinality of the complement of $\mathcal{A}_d(q)$ in $\mathcal{Q}_d(q)$ is

$$\ll \frac{(2d)^{K(q)}}{c^2} \phi(q)$$
.

Thus, choosing c large enough (depending on σ_1 , σ_2 , and C) we can ensure that

$$G_{d}(q) > I_{d}(q) - \frac{1}{4}(2d)^{K(q)}\phi(q)$$
,

where $I_d(q)$ is the cardinality of $Q_d(q)$. By Lemma 5.3,

$$I_d(q) > \frac{1}{2}(2d)^{K(q)}\phi(q)$$

if q is large enough. Therefore

$$G_d(q) > \frac{1}{4}(2d)^{K(q)} \phi(q)$$
.

Since

$$J(q) = \phi(q)(1 + o(1))$$
,

It is now necessary to define log $L(s,\chi)$. Assume that χ (mod q) is not the principal character. For each zero β +i γ of $L(s,\chi)$ with $\beta > \frac{1}{2}$, we remove the segment $(\frac{1}{2}$ +i γ , β +i γ] from the half-plane $\sigma > \frac{1}{2}$. We define log $L(s,\chi)$ on the resulting slit half-plane to be that analytic branch of logarithm which satisfies

$$\lim_{\sigma \to \infty} \log L(s,\chi) = 0 .$$

With this convention we state

Lemma 5.6. Let C be a compact set in the strip $\frac{1}{2} < \sigma_1 < \sigma < \sigma_2 < 1 \text{ and set } \delta = \sigma_1 - \frac{1}{2} \text{. For each } q \geq 1$ there is a subset $\sqrt[4]{(q)}$ of the set of characters (mod q) with cardinality

$$J(q) = \phi(q)(1 + o(1))$$

such that when q is sufficiently large,

(17)
$$\max_{s \in C} |\log L(s,\chi)| - \sum_{n < q^{\delta/2}} \frac{\int_{q^{\delta/4}}^{(n)\chi(n)} |\sqrt{-\delta^2/8}}{\int_{q^{\delta/4}}^{(n)\chi(n)} |\sqrt{-\delta^2/8}}$$

for all χ ϵ , (q) . The implied constant depends on σ_1 and C .

Proof: Let $A = \max_{s \in C} |s|$. We define f(q) to be the set of characters remaining after we remove from the set of all characters (mod q) the principal character and any character whose corresponding L-function has a zero with

(18)
$$\beta \geq \frac{1}{2} + \frac{\delta}{2} , |\gamma| \leq A + q^{\delta/4} .$$

In this way we remove

$$\ll \sum_{\chi \pmod{q}} N(\frac{1}{2} + \frac{\delta}{2}, A + q^{\delta/4}, \chi)$$

characters. By Lemma 3.1 this is

<<
$$(q(A + q^{\delta/4}))^{1-\delta/2} log^{14}(q(A+q^{\delta/4}))$$

Thus the cardinality of $\frac{1}{2}$ (q) is

$$J(q) = \phi(q) + O(q) .$$

In view of Lemma 5.1 we therefore have

$$J(q) = \phi(q)(1 + o(1))$$
.

We note that for each χ ϵ χ (q) , L(s, χ) has no zeros or poles in the region

$$\frac{1}{2} + \frac{\delta}{2} \le \sigma < \infty$$
 , $|t| \le A + q^{\delta/4}$.

Thus log $L(s,\chi)$ is analytic and single-valued in this region.

We now prove (17), Let $\chi \in J(q)$ and $s = \sigma + it \in C$. Integrating both sides of (3.19) in Lemma 3.8 along the half-line $[\sigma + it, \infty + it)$ yields

$$\log L(s,\chi) - \sum_{n \le x^2} \frac{\Lambda_x(n)\chi(n)}{n^s \log n}$$

$$<< \frac{1}{\log x} \int_{\sigma}^{\infty} \sum_{r=0}^{\infty} \frac{x^{-2r-\sigma t-u} + x^{-2(2r+\sigma t+u)}}{(2r+\sigma t+u)^2 + t^2} du$$

$$+ \frac{1}{\log x} \int_{\sigma}^{\infty} \frac{x^{\beta-u} + x^{2(\beta-u)}}{(\beta-u)^2 + (\gamma-t)^2} du.$$

We write this as

(19)
$$\log L(s,\chi) - \sum_{n \le x^2} \frac{\Lambda_x(n)\chi(n)}{n^s \log n} << \frac{1}{\log n} (R_1(s,\chi) + R_2(s,\chi))$$
.

We now estimate \mbox{R}_1 and \mbox{R}_2 assuming that $\mbox{x} \geq 2$. For \mbox{R}_1 we have

$$R_{1}(s,\chi) \ll \int_{\sigma}^{\infty} \left(\sum_{r=0}^{\infty} x^{-2r-\alpha-u}\right) du$$

$$\ll \left(\sum_{r=0}^{\infty} x^{-2r}\right) \int_{\sigma}^{\infty} x^{-u} du$$

$$\ll \frac{x^{-\sigma}}{\log x},$$

where the <code><<</code> is absolute since <code>x \geq 2</code> . Thus, since <code>\sigma > \frac{1}{2} + \delta\$</code> for <code>s \epsilon C</code> , we find

(20)
$$R_1(s,\chi) << \frac{x^{-1/2-\delta}}{\log x}$$

uniformly for s ϵ C and χ ϵ χ (q) . To treat R_2 we write

(21)
$$R_{2}(s,\chi) = R_{21}(s,\chi) + R_{22}(s,\chi),$$

where

$$R_{21}(s,\chi) = \int_{\sigma}^{\infty} \frac{\sum_{|\gamma-t| \leq q^{\delta/4}} \frac{x^{\beta-u} + x^{2(\beta-u)}}{(\beta-u)^2 + (\gamma-t)^2} du}{(\beta-u)^2 + (\gamma-t)^2}$$

and

$$R_{22}(s,\chi) = \int_{\sigma}^{\infty} \sum_{q^{\delta/4} < |\gamma-t|} \frac{x^{\beta-u} + x^{2(\beta-u)}}{(\beta-u)^{2} + (\gamma-t)^{2}} du.$$

In light of (18), each zero $\beta+i\gamma$ in the sum for $R_{21}(s,\chi)$ has $\beta<\frac{1}{2}+\frac{\delta}{2}$. Also for $u\geq\sigma$, $\beta-u<-\frac{\delta}{2}$. Thus

$$R_{21}(s,\chi) \ll \int_{\sigma}^{\infty} x^{\beta-u} du \sum_{|\gamma-t| \leq q^{\delta/4}} \frac{1}{\delta^2 + (\gamma-t)^2}$$

$$\ll \frac{x^{-\delta/2}}{\log x} \left(\sum_{|\gamma-t| \leq 1} \frac{1}{\delta^2} + \sum_{1 \leq |\gamma-t| \leq q^{\delta/4}} \frac{1}{(\gamma-t)^2} \right).$$

By Lemma 3.2,

$$\sum_{|\gamma-t|\leq 1} \frac{1}{\delta^2} \ll \frac{1}{\delta^2} \log q(|t|+2) \ll \log q(|t|+2)$$

and

Hence

(22)
$$R_{21}(s,\chi) \ll \frac{x^{-\delta/2}}{\log x} \log q(|t|+q^{\delta/4}+2)$$
.

The implied constant depends only on $\,\delta$. Since $\,\beta\,<\,1$ for every zero $\,\beta+i\,\gamma$, we find that

$$R_{22}(s,\chi) << \int_{\sigma}^{\infty} (x^{1-u} + x^{2(1-u)}) du \sum_{q^{\delta/4} < |\gamma-t|} \frac{1}{(\gamma-t)^2}.$$

The integral is

$$<<\frac{1-26}{\log x}$$

as $\sigma > \sigma_1 = \frac{1}{2} + \delta$ and the constant is absolute. For the sum we obtain by Lemma 3.2 the estimate

$$\sum_{\substack{q^{\delta/4}<|\gamma-t|}} \frac{1}{(\gamma-t)^2} \ll \sum_{\substack{j>[q^{\delta/4}]}} \frac{\log q(|t+j|+2)}{j^2}$$

$$+ \sum_{j>[q^{\delta/4}]} \frac{\log q(|t-j|+2)}{j^2}$$

$$<< \sum_{j>[q^{\delta/4}]} \frac{\log q(|t|+j+2)}{j^2}$$

$$<< \int_{q^{\delta/4}}^{\infty} \frac{\log q(|t|+x+2)}{x^2} dx$$

$$= -\frac{\log q(|t|+x+2)}{x}\Big|_{q^{\delta/4}}^{\infty} + \int_{q^{\delta/4}}^{\infty} \frac{dx}{x(|t|+x+2)}$$

$$<< \frac{\log q(|t|+q^{\delta/4}+2)}{q^{\delta/4}}.$$

Thus

$$R_{22}(s,X) \ll \frac{x^{1-2\delta}}{\log x} \frac{\log q(|t|+q^{\delta/4}+2)}{q^{\delta/4}}$$
,

where the constant is absolute. Combining this with (21) and (22) yields

$$R_2(s,\chi) \ll \frac{\log q(|t|+q^{\delta/4}+2)}{\log x} (x^{-\delta/2} + \frac{x^{1-2\delta}}{q^{\delta/4}})$$
.

This along with (19) and (20) leads to

(23)
$$\log L(s,\chi) - \sum_{n \le x^2} \frac{\Lambda_x(n)\chi(n)}{n^s \log n}$$

$$<<\frac{1}{(\log x)^2}(x^{-1/2-\delta} + (x^{-\delta/2} + \frac{x^{1-2\delta}}{q^{\delta/4}})\log q(|t|+q^{\delta/4}+2))$$
,

where $x \ge 2$ and the implied constant depends only on δ , hence on σ_1 . Taking $x = q^{\delta/4}$, $q \ge 2^{4/\delta}$, and noting that $|t| \le A$ for $s \in C$, we find the right-hand side of (23) is

$$<<\frac{1}{\delta^2 (\log q)^2} \left(q^{-\delta/8-\delta^2/4} + (q^{-\delta^2/8} + q^{-\delta^2/2}) \log q (A+q^{\delta/4}+2)\right)$$

$$<< q^{-\delta^2/8}$$
.

This last << depends on σ_1 and A , or σ_1 and C . Since this bound is uniform for s ϵ C and $\chi \epsilon \downarrow (q)$, this establishes (17) and completes the proof of the lemma.

Lemma 5.7. Let C be a compact set in the strip $\frac{1}{2} < \sigma_1 < \sigma < \sigma_2 < 1 \text{ and set } \delta = \sigma_1 - \frac{1}{2} \text{ . Suppose that } \rho > \mu > 1 \text{ . Then there exist entire functions } \ell_{\mu} (s,q)$ such that if $0 \le \theta_p < 1$ for $\mu , and if q is sufficiently large, there is a character <math>\chi$ (mod q) for which we have

$$\max_{s \in C} |\log L(s,\chi) - \ell_{\mu}(s,q) - \sum_{\substack{\mu$$

The implicit constant depends on $\ \sigma_1$, σ_2 , and $\ C$.

Proof: Let N = [8 log μ] and take q so large that $q^{\delta/4} \ge \max(\mu^N, \rho)$. With $\Lambda_{_{\bf X}}(n)$ as in Lemma 5.6 we have

(24)
$$\sum_{n < q^{\delta/2}} \frac{\int_{q^{\delta/4}}^{h} f(n) \chi(n)}{\int_{q^{\delta/4}}^{h} f(n) \chi(n)} = \sum_{p \le \mu} \sum_{k=1}^{N} \frac{\chi(p^{k})}{\int_{q^{\delta/4}}^{h} f(n) \chi(n)} + \sum_{\mu < p \le \rho} \frac{\chi(p)}{p^{s}}$$

+
$$\sum_{\rho$$

$$+ \sum_{p \le \mu} \sum_{k=N+1}^{\infty} \frac{\int_{\delta/4} (p^k) \chi(p^k)}{p^{ks} \log p^k}$$

+
$$\sum_{\mu$$

Assume s ϵ C and note that $\left| \underset{q}{\Lambda}_{\delta/4}\left(n\right) \chi \left(n\right) /log \; n \right| \; \leq \; 1$.

Then

$$\sum_{p \le \mu} \sum_{k=N+1}^{\infty} \frac{\int_{q^{\delta/4}}^{\Lambda} (p^k) \chi(p^k)}{p^{ks} \log p^k} << \sum_{p \le \mu} \sum_{k=N+1}^{\infty} \frac{1}{p^{\sigma k}}$$

$$<<\sum_{p\leq\mu}\frac{1}{p^{\sigma(N+1)}}<<\mu^{2^{-\sigma(N+1)}}$$
.

Since $\sigma>\frac{1}{2}$ for s $_{E}$ C , N = [3 log $_{\mu}]$, and log 2 > $\frac{1}{2}$, this is

$$<< \mu e^{-4} \log 2 \log \mu = \mu^{1-4} \log 2 < \mu^{-1}$$
 .

Notice that the implicit constants in these estimates are absolute. Since $\sigma>\sigma_1=\frac{1}{2}+\delta$ for s ϵ C , we next find

$$\sum_{\mu
$$<< \sum_{\mu < p} \frac{1}{2^{\sigma_{1}}} < \sum_{\mu < p} \frac{1}{2^{\sigma_{1}}} << \frac{\mu^{1-2\sigma_{1}}}{2^{\sigma_{1}-1}}$$

$$<< u^{-2\delta}.$$$$

The implicit constant in the last $\stackrel{<<}{}$ depends on σ_1 . As

$$\mu^{-1} < \mu^{-2\delta}$$

we may combine these estimates with (24) to obtain

(25)
$$\sum_{n < q^{\delta/2}} \frac{\int_{q^{\delta/4}}^{(n)\chi(n)} \int_{p \le \mu}^{(n)\chi(n)} \frac{\int_{p \le \mu}^{N} \frac{\chi(p)^{k}}{k} - \int_{\mu < p \le \rho}^{\chi(p)} \frac{\chi(p)}{p^{s}} }{\int_{p \le p < q^{\delta/2}}^{(n)\chi(n)} \frac{\int_{p \le \mu}^{N} \frac{\chi(p)^{k}}{k} - \int_{\mu < p \le \rho}^{\chi(p)} \frac{\chi(p)}{p^{s}} } + O(\mu^{-2\delta})$$

uniformly for s ϵ C and χ (mod q), where the constant in the O-term depends on σ_1 . Now let $\chi(q)$ be the set of characters in Lemma 5.6. By that lemma when q is sufficiently large, we have

(26)
$$\sum_{n < q^{\delta/2}} \frac{\int_{q^{\delta/4}}^{(n)\chi(n)} (n)}{n^{s} \log n} = \log L(s,\chi) + O(q^{-\delta^{2}/8})$$

uniformly for s ϵ C and χ ϵ \downarrow (q), where the 0-term constant depends on σ_1 and C. Furthermore since the cardinality of \downarrow (q) is ϕ (q) (1+o(1)), Lemma 5.5 implies that if $0 < d < \frac{1}{2}$ and q is sufficiently large, then there is a χ ϵ \downarrow (q) such that

(27)
$$\left\|\frac{\arg\chi(p)}{2\pi}\right\| \leq d \text{ if } p \leq \mu \text{ and } p/q,$$

(28)
$$\left\| \frac{\text{arg } \chi(p)}{2\pi} - \theta_p \right\| \leq d \text{ if } \mu ,$$

and

(29)
$$\max_{\text{sec}} \left| \sum_{\rho$$

where the implicit constant in the << in (29) depends on σ_1 , σ_2 , and C . It follows from (27) and (28) that if d is small enough

(30)
$$\max_{\mathbf{s} \in C} \left| \sum_{\mathbf{p} \leq \mu}^{N} \sum_{\mathbf{k} = 1}^{N} \frac{\chi(\mathbf{p}^{\mathbf{k}})}{\mathbf{p}^{\mathbf{k}\mathbf{s}}} - \sum_{\mathbf{p} \leq \mu}^{N} \sum_{\mathbf{k} = 1}^{N} \frac{1}{\mathbf{p}^{\mathbf{k}\mathbf{s}}} \right| \leq \mu^{-\delta}$$

and

(31)
$$\max_{s \in C} \left| \sum_{\mu$$

We combine (25), (26), (29), (30), and (31) to obtain

(32)
$$\log L(s,\chi) - \sum_{p \le \mu} \frac{N}{k=1} \frac{1}{p^{ks}} - \sum_{\substack{\mu$$

$$<< \mu^{-2}\delta + q^{-\delta^2/8} + \rho^{-\delta} + \mu^{-\delta}$$

where the implied constant depends at most on σ_1 , σ_2 , and C . Since $\rho > \mu$, if we take q large enough the right-hand side of (32) is

Define ℓ_{μ} (s,q) in the statement of the lemma by

$$2\mu(s,q) = \sum_{p \le \mu} \sum_{k=1}^{N} \frac{1}{p^{ks}}.$$

This completes the proof.

§3. Proof of Theorem 5.1

Suppose C and f(s) satisfy the hypotheses of Theorem 5.1. Since C is compact and is contained in the strip $\frac{1}{2}$ < σ < 1 , there are numbers σ_1 , σ_2 such that C is in the strip $\frac{1}{2}$ < σ_1 < σ < σ_2 < 1 . Let δ = σ_1 - $\frac{1}{2}$,

let $\ell_{\mu}(s,q)$ be the entire function of Lemma 5.7, and assume $\mu > 1$. We let $\Lambda_q = \{\log p | p/q\}$, where $q \ge 1$. For the counting function N_{Λ} (x) we have

$$\mathbb{N}_{\Lambda_{q}}(x) = \pi(e^{x}) + O_{q}(1)$$
.

Since $\pi(x) = \pi(x; 1,1)$, we have by Lemma 3.3 for fixed q

$$N_{\Lambda_{q}}(x) = 1i e^{x} + O(e^{x-c\sqrt{x}}).$$

Obviously

$$N_{\Lambda_q}(x) \ll e^x$$
.

Furthermore

$$N_{\Lambda_{q}}(x + \frac{c_{1}}{x^{2}}) - N_{\Lambda_{q}}(x) = \begin{cases} e & \frac{dt}{\log t} + o(e^{x+c_{1}/x^{2}} - e\sqrt{x}) \\ e^{x} & \frac{dt}{\log t} \end{cases}$$

>>
$$\frac{\frac{c_1}{x^2}}{\log(e^{x+c_1/x^2})}$$
 >> $\frac{e^x}{x^3}$.

Similarly

$$N_{\Lambda_{q}}(x) - N_{\Lambda_{q}}(x - \frac{c_{1}}{x^{2}}) >> \frac{e^{x}}{x^{3}}$$
.

Thus $N_{\Lambda_{\mathbf{q}}}(\mathbf{x})$ satisfies the hypotheses of Lemma 2.2. Since $f(s) - l_{\mu}(s,q)$ is continuous on C and analytic in the interior of C, there must therefore exist a number $\rho > \mu$ and numbers θ_p , $0 \le \theta_p < 1$, such that

(33)
$$\max_{s \in C} |f(s) - l_{\mu}(s,q) - \sum_{\substack{\mu$$

where the implied constant depends on σ_1 , σ_2 , C , and Λ_q . On the other hand if q is sufficiently large, we know by Lemma 5.7 that there is a χ (mod q) such that

(34)
$$\max_{s \in C} |\log L(s,\chi) - \ell_{\mu}(s,q) - \sum_{\substack{\mu$$

the implied constant being dependent on $\ \sigma_1$, $\ \sigma_2$, and C . Combining (33) and (34) yields

$$\max |\log L(s,\chi) - f(s)| << \mu^{-1/2} + \mu^{-\delta} << \mu^{-\delta} .$$
 seC

For large μ we therefore have

$$L(s,\chi) = e^{f(s)} \cdot e^{\log L(s,\chi) - f(s)}$$

$$= e^{f(s)} (1 + O(\mu^{-\delta}))$$

$$= e^{f(s)} + O((\max_{s \in C} e^{|f(s)|}) \mu^{-\delta})$$

$$= e^{f(s)} + O(\mu^{-\delta})$$

uniformly for s ϵ C . Since the error term is independent of q and μ , we conclude on taking μ sufficiently large that for all large q there is a χ (mod q) such that

$$\max_{s \in C} |L(s,\chi) - e^{f(s)}| < \epsilon$$
,

where $\epsilon > 0$ is arbitrary. This proves Theorem 5.1.

LITERATURE CITED

- [1] H. Bohr and R. Courant, "Neue Anwendungen der Diophantischen Approximationen auf die Riemannsche Zetafunktion", J. f. Reine und Angew. Math., 144(1914), 249274.
- [2] J.W.S. Cassels, "Footnote to a note of Davenport and Heilbronn", J. London Math. Soc., 36(1961), 177-184.
- [3] E.W. Cheney, <u>Introduction to Approximation Theory</u>, McGraw-Hill, New York, 1966.
- [4] H. Davenport, <u>Multiplicative Number Theory</u>, Markham, Chicago, 1967.
- [5] H. Davenport and H. Heilbronn, "On the zeros of certain Dirichlet series, I, II", <u>J. London Math. Soc.</u>, 11(1936), 181-185, 307-312.
- [6] A. Good, "On the value distribution of Riemann's zeta-function", to appear.
- [7] G.H. Hardy and J.E. Littlewood, "Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes", Acta Math., 41(1918), 119-196.
- [8] A.E. Ingham, "Mean-value theorems in the theory of the Riemann zeta-function", Proc. London Math. Soc., (2) 27(1926), 273-300.
- [9] N. Levinson, "More than one third of the zeros of

- Riemann's zeta-function are on $\sigma = \frac{1}{2}$ ", Advances in Math., 13(1974), 383-436.
- [10] D.A. Marcus, <u>Number Fields</u>, Springer-Verlag, New York, 1977.
- [11] A.A. Markov, "On a problem of D.I. Mendeleev", <u>Izv.</u>
 Akad. Nauk St. Petersburg, 62(1889), 1-24.
- [12] H.L. Montgomery, <u>Topics in Multiplicative Number</u>

 <u>Theory</u>, Lecture Notes in Mathematics, Vol. 227,

 Springer-Verlag, Berlin, 1971.
- [13] H.L. Montgomery, "Extreme values of the Riemann zeta function", Comm. Math. Helv., 52(1977), 511-518.
- [14] H.L. Montgomery and R.C. Vaughan, "Hilbert's inequality", J. London Math. Soc., (2)8(1974), 73-82.
- [15] D.V. Pecerskii, "A theorem on projections of rearranged series with terms in Lp", <u>Izv. Akad. Nauk SSSR Ser. Mat.</u>, 41(1977), 203-214. See also: <u>Math. USSR Izvestija</u>, 11(1977), 193-204.
- [16] K. Prachar, <u>Primzahlverteilung</u>, Springer-Verlag, Berlin, 1957.
- [17] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- [18] W. Rudin, <u>Functional Analysis</u>, McGraw-Hill, New York, 1973.
- [19] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951.
- [20] S.M. Voronin, "On the distribution of nonzero values of the Riemann zeta-function", Trudy Mat. Inst.

- Steklov., 128(1972), 131-150. See also: Proc.
 Steklov Inst. Math., 128(1972), 153-175.
- [21] S.M. Voronin, "Theorem on the "universality" of the Riemann zeta-function", <u>Izv. Akad. Nauk SSSR Ser. Mat.</u>, 39 (1975), 475-486. See also: <u>Math. USSR Izvestija</u>, 9 (1975), 443-453.
- [22] S.M. Voronin, "On the zeros of zeta-functions of quadratic forms", <u>Dokl. Akad. Nauk SSSR</u>, 235(1977), 257-258. See also: <u>Soviet Math. Dokl.</u>, 18(1977), 910-911.
- [23] S.M. Voronin, "On the functional independence of Dirichlet's L-functions", Acta Arith., 27(1975), 493-503.
- [24] S.M. Voronin, "On the zeros of zeta-function of quadratic forms", <u>Trudy Mat. Inst. Steklov</u>, 142(1976), 135-147.
- [25] S.M. Voronin, "Analytic properties of Dirichlet functions with arithmetic consequences", dissertation abstract.
- [26] E.T. Whittaker and G.N. Watson, <u>A Course of Modern</u>

 <u>Analysis</u>, Fourth Edition, Cambridge University Press,
 London, 1952.
- [27] R.T. Worley, "On a result of Cassels", J. Austral.

 Math. Soc., 11(1970), 191-194.