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where

Sy (z,x) = L . '

SZ (ZIX) = 2 14

and p' > p . Clearly

Z |5, (z,%) % < Z 185 (z,%) |2

xedg(q) 7 X (mod q)

and the sum over all X (mod g) may be estimated as in the
case X = 0 above. We then obtain
l—ZGl

(5) Z 1S5 (2, %) [2 << ¢(q) (o)
Xels (q)

for z e 35U , where the implied constant depends on g1
We now estimate the remaining sum on the right hand side of

(4). Fix ¢ > 0 so small that 0 < d-c¢ and d+e < % .

From the proof of Lemma 3.6 we recall the function & (1)

was defined so that £(t) =1 if ”T” <d, (1) 0 if

Il

”ﬁl 2 d+te , and £&(1) drops off to 0 linearly on

d < [lf| < a+e . Also




where the series converges absolutely and
CO = 2d+e .

Let pjys...,Pgx Cdenote the primes in @K and define

K arg x (p,.)
Ex() = T T E(——5 - o_) .
k=1 27 Pk
Then
"
(7) 0BT £ B () (x (mod q))
and
3) 1l = 2 =
( = £ 00 = E (0 (x e Lal@) -
Furthermore we have
5 X ng
(9) Ex(x) = CnyteCn,® |~ L Mg | X Py
—®<Ny .. DL L k=1 k k=1
X n
= Z c (@) x pkk , say,
R k=1
where n = (nl,...,nv) runs through all X-tuples of inte-
gers and

(12 c(®) = o = (2a+e)™ .
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Since the series in (5) 1s absolutely convergent, so is the

series in (9). Thus, given El > 0 , there exists a number

N(sl) such that for each N > N(el) and all y {(mod g),

K n,
2. () - 1 <@y o ] < ey
5 1R <x k=1 L
N R_ ,\1/2
where ”n“ = ny . For such an N we obtain
k=1
5 X n, 2
B 00 22y 1 emx T T e
(1Al <y k=1
. N X ) 2
+ 208 (x) - ) e@x|] j
X A <x k=1 ©
K 1nk 2 5
< } Lo T T rop l + 2e] .
Hall < k=1

Using this, (7), and (8), we find

(11) Z |s. (z,%)|? < Z £2(x) s (z,x)l2
xedy (q) L T x(mod q) t
< 2 Ez

¥ (mod q)

N X ny 2 -5
c@xX T | py [sq(z,x) |7
k=1 =

(13 <

+

[\

M
§

Z ]Sl(z,x) |12 .

X (mod q)




143

Write 2z = x+iy . We immediately obtain from Lemma 5.2 that

[Ag5/4(p)x(p)/log 2|

(12) EZ s, (z,x) 1% = ¢()
X(mod q) < p<p<p’ p2*

As in our previous estimates we see that this leads to

1-20
(13) Ez sy (2,0 1% << o(qrp ~ t

X (mod q)

for z & 3U , where the constant depends on 9, . Again by

Lemma 5.2 we have

. Zz: zz N X nk 2 ;
(14) c(n)Xx T_T-py I lsl(z,X)I‘

X (mod q) |||af <x k=1

2
!A 6/4(p)x(p)/log o

= 4 (q) Ez lcm)y |2 =

[[5]) <x p<p<p’ p2X¥

T

provided gq is so large that .none of the numbers
K n]

o ] pk{ r £ <P <p', are larger than g . The sum

over p 1is exactly the right-hand side of (12), so by (13)

l-?.crl
<< ¢(g)p

for =z € 3U , where the constant depends on Gy - We deduce

from (7) and (10) the absolute convergence of the series for




EK(X) , and the relations

lim —2— z X (n)X(m) =
g*® é(q) x(mod q)

0 otherwise ,

lim -+ Z X (n) =

g>e ¢(g) x(mod q)

0 otherwise ,
that

_Z le@® [? < % le@ % = 1im -2 Z £2 00
finl<n 13l g*e ¢(g) x(med q)

< lim 2 Z £, (X)
g*>  ¢(q) X(mod q) °

I

c(3) = (2d+s:)K .

Thus the expressions in (14) are

1-20
<< (2d+e)K¢(q)p 1 .

Combining this with (11) and (13) we get

1-20
(15) Z [s1G20) 17 << (2are)” + Dyo@p 1
xedy (q)
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for each =z € 3U , where the constant depends on o1 .

Finally, from (3), (4), (5), and (15) we find that

EZ max|S(s,x) |?

xe&a(q) SeC

1-20, 1-2¢
< (@a+e)S + eDo(@p  T+o(q) (o) 1,

where the constant depends on Gy ¢ , and A , or, since
S and A depend on Gy » O , and C , on 01 » O , and

C . Choose p' so large that
1-2¢ 1-20
1 R
(p") < (2a) p 1 ’
and €,£7 so small that

(2a+e)® + €2 < 2020 .

[N}

This gives (2) and proves the lemma. [j

Lemma 5.5. Let C be a compact set in the strip

% < 0; <0< 52 <1, let p 21, and lat 0 < g <

For each p < p 1let ep be fixed, o < 8, < 1. I

aQa>1, 2(q) is a subset of the set of characters (mod q)

with cardinality

J(g) = é(q) (1L + o (1)) ,
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then for q sufficiently large there is a 1y ¢ é{q) such

that
(16) ”éEHgfiEl - ep” <d,p<p s Pfa
and

A 6/4(p)x(p)

max Z 4
seC|p<p<a p° log p

1/2—01
<< p .

The implicit constant depends on o, , 0, , and C .

1 2

Proof: Let K(q) Dbe the number of primes p < p such
that p*q , and let .Qd(q) be the set of characters (mod q)
which satisfy (15). ™e write
1
/ch

#d(Q) = {x ¢ &d(q)[maxls(s,x)[ < cp } o,
seC

where

A (P)x (p)
q5/4

S(s,x) = 2 ’
p<p<g p° log p

and we write Gd(q) for the cardinality of }id(q) . It
suffices to show that for some choice of ¢ depending on

Gy v Oy and C , and for all large g ,

Ha@N 3@
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is non-empty. ‘low for large g we have by Lemma 5.4 that

- 1-20
Z max|s(s,x) " << ¥ Dy (q)p 1,
XEQa(q) seC

where the constant implied by << depends on Gl p 02 p

and C . It follows that the cardinality of the complement
of ﬁ(d(q) in &&d(Q) is
(2a) ¥ (@)

<< 22— 6(q) .
C2

Thus, choosing ¢ large enough (depending on 0y 7 O

and C)° we can ensure that

Gqla) > I (q) - )X @y (q) ,

s

where I,(g) 1is the cardinality of &a(q) . By Lemma 5.3,
I,(@) > 30X @ g
if g 1is large enough. Therefors

R{q) ,
o]

1
Gd(q) > Z(2d) (@) .

Since

J(gq) = 2(g) (1 + o(1)) ,
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é(q) and }{d(q) must overlap for large ¢ . This proves

the lemma. []

It is now necessary to define 1log L(s,Yx) . Assume

that ¥ (mod g) is not the principal character. For each

zero fB+iy of L(s,x) with 8 > % , we remove the segment

(%+iy, B+iy] from the half-plane o > . We define

3o oo

log L(s,x) on the resulting slit half-plane to be that

analytic branch of logarithm which satisfies

lim log L(s,X)'= 0

g->x

With this convention we state

Lemma 5.6. Let C be a compact set in the strip

% <0y <0< a, < 1 and set § = Gl-% . For each g >1

there is a subset ,g%q) of the set of characters (mod q)

with cardinality

J(@) = ¢(@) (L + o(1))

such that when q 1is sufficiently large,

g << q

(17) max|log L(s,x) -
seC n<q6/2 n® log n

for all yx € é(q) . The implied constant depends on 0y

and C .
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Proof: Let A = maxls! . We define é(q) to be the
seC

set of characters remaining after we remove from the set of
all characters (mod gq) the principal character and any char-

acter whose corresponding L-function has a zero with

(18) s>2+ 8, |yl <a+ gt

NS} fec)

In this way we remove

<< Ez N(

¥ (mod q)

NI

+§, A+q6/4, X)

characters. By Lemma 3.1 this is

1-§/2

<< (a(a + g%y logl® (g (a+q®?))

1-5/4

<< g .

Thus the cardinality of ,g(q) is
1-6/4
J(q) = é(g) + O(g )
In view of Lemma 5.1 we therefore have

J(@) = ¢(q) (1 + of(l)) .

We note that for each 1y ¢ 3(q) » L(s,Xx) has no zeros or

poles in the region
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+2 <o <=, |t] < arg?t .

N+
3] o

VThus log L(s,x) is analytic and single-valued in this re-

gion.
We now prove (17), Let x € é(q) and s

Integrating both sides of (3.19) in Lemma 3.8 along the

= og+it ¢ C .

half-line [o+it, «+it) yields

7 Ax(n)X(n)
n<x2 nS log n

log L(s,x) -

[o0)
© ~2r-ouw-u =2 (2r+x+u)
<< 1 i + ? du
log x =0 (2r+ot+u) =™ + =
1 XB—u + X2(B—u)
+ 5 5 du .
log x 5 B+iy (B-u)” + (y=-t)~
We write this as
A (n)x(n) -
(19) log L(s,x) - [ _ ==X << (Ry (s,X)+R, (s,X))
2 _s 1 2
n<x® n° log n log n

R and R assuming that x > 2 . For

We now estimate 1 2

Rl we have




<< 7 x~ 2T J x Ydu
=0

<< .S
log x

where the << 1is absolute since x > 2 . Thus, since

1

c > §+6 for s £ C , we find

-1/2-8
(20) Ry (s,x) << > SN
log x

uniformly for s € C and Y € g(q) . To treat R, we

write
(21) RZ(SIX) = R?_l(S,X) + RZZ(S,X) 7
where
© £-u 2 (B-u)
+ x
Ryq(s,X) = X du

2

: L lv-t1<a®* (aew2 4 (y-0)7
and

XB-u X2(B-u)

Rzz(s,x)

o4

du .

) J 7% %< ly=t] (g-u)

of

+ (y-t)2
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In light of (18), each zero B8+iY in the sum

has B < %4

N
NIl os

Also for u > 0 , B-y < —g . Thus

<

R21(S'X) << l xP-u du

. [v-£1<q®/% 67 4+ (y-1)2

-8/2
<< X /H Z l-_.{.. z __L__

log x\ly=-t]<1 82 1<[y-t]<q®/? (y-t)2
By Lemma 3.2,

1

5 << —% log g(|t[+2) << log q(|t]+2)
ly-tf<1 8 §

and

8/4

Ez 1 ) I log g(]t+j]+2)
’ §/4 2 el )

1<|y-t|<q (Y-t) j=1

. L

J

o8/4
N [qsg ' 1og q(lt-j]+2)

j=1 52

<< log q(|t|+q®/%42)

Hence

~5/2

(22) Ryq (s,%) << Z log g (]t [+q%/%+2)

log x
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The implied constant depends onlv on &§ . Since R < 1

o

for every zero g+iy , we £ind that

Rys(s,%) << j (xt~1 4 xz(l—u))du 1 .
o >y

The integral is

<<

N

as ¢ > gy = 5+§ and the constant is absolute. For the sum

we obtain by Lemma 3.2 the estimate

Ez —1 EZ log g {{t+3!+2)
3 ymt] (012 e 1q8/4 12

-
X<

o

A <

_ _ log a(]t]l+x+2)

<+
X '3/ Jq5/4 2([t]+x+2)
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log q({t]+ga/4+2)

<<
/4 )
g%/
Thus
; ce 5220 log a(le[+a¥/%42)
R, (s,X) 572
4l log x g

where the constant is absolute. Combining this with (21)

and (22) yields

5/4
B, (s,0) << log a(|t]+g®/ *+2) LY

log x qs/4
This along with (19) and (20) leads to

A (n)x(n)
(23)  log L(s,x) - -
n<xz? n® log n

_1/0_ 1-28
<< ———i————(x /2=8 + (X'S/2 + £

(log %) 2 g8/4

)log a(]t|+q/%+2)) ,

where x > 2 and the implied constant depends only on §

§/4

F
hence on gy - Taking x = q r g > 2 4/5, and noting
that |t] <A for s e C , we find the right-hand side of

(23) is

il
La

N 2
- -8 = /2
<< ._2_1_;@ 8/8=82/4 , (=87/8 , -8°/2
8% (log q)*

g )log q(A+qd/4+29
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2
<< q—ﬁ /8

This last << depends on 9, and A , or o7 and C.

Since this bound is uniform for s & C and xe:%(q) . this

establishes (17) and completes the proof of the lemma. []

Lemma 5.7. Let C be a compact set in the strip
1<

5 0y <0 <0, <1 and set ¢ = 01'% . Suppose that
o

> u > 1 . Then there exist entire functions 2u(s,q)

such that if 0 < 6_ <1 for uw <p <p, and if g 1is

P
sufficiently large, there is a character X (mod g) for
which we have

e(e ) -8
<< u .

max|log L(s,X) =% (s,q) -

seC u 0

g

;
7

<pg<
oy ]

The implicit constant depends on o, , O, , and C .
1 2

Proof: Let N = [8 log u] and take g so large that

q6/4 3_max(uN,p) . With AX(n) as in Lemma 5.6 we have
A (n)x (n)
§/4 ; M k
(24) a2 SR D R =i N S S¢<2
n<qd/2 n® log n p<u k=1 k pks u<p<p p°

Ez A 574 (PIX(P)
+ g

p<p=g

§/2
/ p° log p




k k
Aq6/4<p")x<p )

~1 8

)

p<u k=N+l pXS log pF

. Aq6/4(Pk)X(pk)

Assume s ¢ C and note that |} 6/4(n)x(n)/log n| < 1.
q

Then
)
A PF) x (p)
o N s/4 w
g L
Z Z ks X << z Z ok
p<u k=N+l P log p™ pP<u k=N+1 p
1 - (N+1)
) << p2 .
, N+1
p< pc( )
. 1 N 1
Since ¢ > 5 for s ¢ C, ¥ = [8 logy] , and log 2 > 5

this is

- -4 -
<< e 4 log 2 log p - ul 4 log 2 < 1

Notice that the implicit constants in these estimates are

absolute. Since o0 > oy = l'+6 for s e C , we next

2

find
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k
. - <<
L L
u<p<q /2 y&s pks log pk u<pg_6/2 k=2 PclP
1-2¢0
<< 1 %c < 1 %c << = :
u<p 71 pen %01 20, -1
<< u—26 .

The implicit constant in the last << depends on O As

1 -

14

we may combine these estimates with (24) to obtain

A (n)x (n) . ;
> o/ T ox)” 1 (p)
(25) = -7 7 = - ] :
n<q‘5/2 n® log n p<u k=1 k p S U<p<p p°

A (p)y (p)
q6/4

= + O(u

o<p<q®/?  pS log p

uniformly for s € C and ¥ (mod g), where the constant

1

of characters in Lemma 5.6. By that lemma when gq is suf-

in the O-term depends on 0, . l!YNow let %ﬂq) be the set

ficiently large, we have

A (n)x (n)
q6/4

-82
§ /8)

(26) = log L(s,¥) + O(g
n<q‘3/2 nS log n )
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uniformly for s ¢ C and y a.é(q) , where the O-term con~-
stant depends on cl and C . Furthermore since the car-
dinality of .é(q) is ¢(a)(1 + o(1l)) , Lemma 5.5 implies
that if 0 < 4 < % and g 1s sufficiently large, then there

is a ¥ e giq) such that

HargZ:(p)” <a

(27) if p <y and plq ,

&

28) [2EaxlRl - g [ <@ if w<p <o and pja,

and

A (P)x (p)
E: q6/4 8

<< o
p<p<g®/2 S 10g p

(29) max
seC

where the implicit constant in the << 'in (29) depends on

01 r 0o , and C . It follows from (27) and (28) that if

<

d is small enough

N k) N

3 (

(30)  max| ] I A= - ] ] —%— <u®

SEC|p<M k=1 p p<u k=1 p*S
and

e(6 )
(31) max z x{p) _ Z —2_1 < u"(S .
seClu<p<p ps H<p<p PS
je¥/fe

Ve combine (25), (26), (29), (30), and (31) to obtain




M 1 e(8 )
(32) log L(s,x) - | | == - [ —=
p<H k=1 p° u<§_<_o p°
plq
-25 ~§%/8 -8 ¢
<< U + + + U

where the implied constant depends at most on Gy r T3 o
and C . Since p > p , if we take g large enough the

right-hand side of (32) is

Define Qu(s,q) in the statement of the lemma by

N 1
Qll(qu) = z z _;{_-S. .
p<p k=1 p’

This completes the proof. [ ]

§3. Proof of Theorem 5.1

Suppose C and f(s) satisfy the hypotheses of
Theorem 5.1. Since C 1is compact and is contained in the

strip % < 0 <1, there are numbers o, , ¢ such that

-
<

1

C is in the strip L g, <0 < 0, <1 . Let § =
2 1 2

r

1
Gl '2'
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let Rn(s,Q) be the entire function of Lemma 5.7, and assume
H>1 . We let Aq = {log pleq} , where g > 1 . TFor the

counting function N (x) we have
g

N, (x) = Te®) + 0o (1)
q
a

Since T(x) = 7w(x; 1,1) , we have by Lemma 3.3 for fixed q

N, (x) = 1i eX 4+ O(ex‘0/§ ) .

q
Obviously
X
Ny (x) << ™,
g
Furthermore
€1
K —
e Xz 2
c X+c, /x¢ - evx
N, (x+=2) - N, (x) = 9t 4 o(e )
q b o log t
eX
c
>> e = e§ >> §§ .
+
log(ex c1/% ) X
Similarly
cl be
- N - —= = .
NA (x) A (x 2) >> S

g a X X




Thus N, (x) satisfies the hypotheses of Lemma 2.2. Since
Aq

£(s) =~ Ru(s,q) is continuous on C and analytic in the

interior of C , there must therefore exist a number p > u

and numbers ep + 0 < ep < 1 , such that
e (8,) -1/2
(33) max|f (s) - Qu(s,q) - ) ? << u / ’
seC H<p<p  pS
PAg

where the implied constant depends on o1 Gy C , and

Aq - On the other hand if q 1is sufficiently large, we

know by Lemma 5.7 that there is a X (mod ¢g) such that

(34) max]log L(s,x) - %l(s,q) - z
seC

e(GD)’
H<p<p  pS
PAq

the implied constant being dependent on 9y » 05 , and C .

Combining (33) and (34) yields

-1/2 - -8
maxllog Ls,yx) - f(s)[<<‘u v/ + u §
seC

For large p we therefore have

L(s,y) = et (8) | J10g Lis,x)-£(s)

=ef) 1 4 o9y

= of(s) | 0 ( (max e]f(s)l)u—d)

seC

= ef(8) 4 o9
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uniformly for s € C . Since the error term is independent
of g and u , we conclude on taking u sufficiently large
that for all large g there is a X (mod g) such that

max|L(s,¥) - ef(s)[ < e

seC

r

where € > 0 is arbitrary. This proves Theorem 5.1. [:]




(1]

[2]

[3]

[4]

(5]

[6]

(7]

[8]

(91

LITERATURE CITED

H. Bohr and R. Courant, "Neue Anwendungen der Diophant-

ischen Approximationen auf die Riemannsche Zetafunk-

tion", J. f£.

Reine und Angew. Math., 144(1914), 249~

274.
J.W.S. Cassels, "Footnote to a note of Davenport and

Heilbronn", J. London Math. Soc., 36(1961), 177-184.

E.W. Cheney, Introduction to Approximation Theory,

McGraw-Hill, New York, 1966.

H. Davenport, Multiplicative Number Theory, Markham,

Chicago, 1967.
H. Davenport and H. Heilbronn, "On the zeros of cer-—

tain Dirichlet series, I, II", J. London Math. Soc.,

11(1936), 181-185, 307-312.

A. Good, "On the value distribution of Riemann's zeta-
function", to appear.

G.H. Hardy and J.E. Littlewood, "Contributions to the
theory of the Riemann zeta-function and the theory of

the distribution of primes", Acta Math., 41(1918),

119-196.
A.E. Ingham, "Mean-value theorems in the theory of the

Riemann zeta-function", Proc. London Math. Soc., (2)

27(1926), 273-300.

N. Levinson, "More than one third of the zeros of

163




[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

164

"

Riemann's zeta-function are on o =

188 [

, Advances in
Math., 13(1974), 383-436.

D.A. Marcus, Number Fields, Springer-Verlag, New York,

1977.
A.A. Markov, "On a problem of D.I. Mendeleev", Izv.

Akad. Nauk St. Petersburg, 62(1889), 1-24.

H.L. Montgomery, Topics in Multiplicative Number

Theory, Lecture Notes in Mathematics, Vol. 227,
Springer-Verlag, Berlin, 1971.
H.L. Montgomery, "Extreme values of the Riemann zeta

function", Comm. Math. Helv., 52(1977), 511-518.

H.L. Montgomery and R.C. Vaughan, "Hilbert's inequal-

ity", J. London Math. Soc., (2)8(1974), 73-82.

D.V. Pecerskii, "A theorem on projections of rear-

ranged series with terms in Lp", Izv. Akad. Nauk SSSR

Ser. Mat., 41(1977), 203-214. See also: Math. USSR

Izvestija, 11(1977), 193-204.

T

K. Prachar, Primzahlverteilung, Springer-Verlag, Ber-

lin, 1957.

W. Rudin, Real and Complex Analysis, McGraw-Hill, New

York, 1966.

W. Rudin, Functional Analysis, McGraw-Hill, New York,

1973.

E.C. Titchmarsh, The Theory of the Riemann Zeta-Func-

tion, Clarendon Press, Oxford, 1951.

S.M. Voronin, "On the distribution of nonzero values

of the Riemann zeta-function", Trudy Mat. Inst.




165

Steklov., 128(1972), 131-15C. See also: Proc.

Steklov Inst. Math., 128(1972), 153-175.

[21] S.M. Voronin, "Theorem on the "universality" of the

Riemann zeta-function", Izv. Akad. Nauk SSSR Ser. Mat.,

39(1975), 475-486. See also: Math. USSR Izvestiija,

9(1975), 443-453. i
[22] S.M. Voronin, "On the zeros of zeta-functions of guad-

ratic forms", Dokl. Akad. Mauk SSSR, 235(1977), 257~

258. See also: Soviet Math. Dokl., 18(1977), 910-911.

(23] S.M. Voronin, "On the functional independence of Diri-

chlet's L-functions", Acta Arith., 27(1975), 493-503.

[24] S.M. Voronin, "On the zeros of zeta-function of quad-

ratic forms", Trudy Mat. Inst. Steklov, 142(1976),

135-147.

[25] sS.M. Voronin, "Analytic properties of Dirichlet func-
tions with arithmetic conseguences"”", dissertation ab-
stract.

[26] E.T. Whittaker and G.N. Watson, A Course of Modern

T e ek 4_‘:‘._.:“‘;?_ iy it
A et LA N e s T S i A e i o R i

Analysis, Fourth Edition, Cambridge University Press,
London, 1952,
[27] R.T. Worley, "On a result of Cassels™, J. Austral.

Math. Soc., 11(1970), 191-194.

il R A A AL 3 A LS S 2 s S il sk Zaeaie

kst e




